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FOREWORD 

It is expected that the method presented in this 
paper will prove valuable within the limitations 
set forth. 

No attempt has been made to formulate a theory 
to include the coupling of torsion and flexure 
and local buckling. 

A s  an extension and modification of existing 
equations, however, it provides a ready tool for 
solution of a particular class of problems. 

C. E. McCandless, Technical Editor 
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LIST OF SYMBOLS 

A 
10 
G 
J 
E 

L' 

P A  

I' 

p# 

PX 
PY 
P 
PC 

I X  

4 = Cross-sectional area (in,*) 
= Moment of i n e r t i a  of the sec t ion  about its shear center  ( i n ,  ) 
= Shear modulus of e l a s t i c i t y  ( p s i )  
= Torsion constant ( ina4  ) 
= Young's modulus of e l a s t i c i t y  ( p s i )  
= Warping constant of t he  sec t ion  ( i n O 6 )  
= Effec t ive  length of member (in.) 
= C r i t i c a l  load i n  pure to r s iona I  buckling ( lb s )  
= C r i t i c a l  load i n  to r s iona l - f l exura l  buckling ( lb s )  
= C r i t i c a l  Euler load about x axis ( lb s )  
= C r i t i c a l  Euler load about y ax i s  ( lbs )  
= Axial load ( lb s )  
= C r i t i c a l  load i n  combined c r ipp l ing  and to r s iona l - f l exura l  buckling 

= Moment of i n e r t i a  about x ax i s  (in.4) 
(1bs) 

ly = Moment of i n e r t i a  about y a x i s  ( i n O 4 )  
r o  

1 - X, 2 = Constant K =  

xo 
yo 
P I ,  P2, P3 = Roots of cubic equation ( lbs )  
A o ,  A I ,  A 2 ,  A3 
Fce = Column f a i l i n g  stress f o r  Johnson-Euler buckling ( p s i )  
F,, = Crippling stress ( p s i )  
p 

Pce = Column f a i l i n g  load f o r  Johnson-Euler buckling ( l b s )  
Pcs = Crippling load ( lbs )  

Pe 

= Polar rad ius  of gyra t ion  about shear center  ( in . )  

(4 
= Distance from cent ro id  t o  shear center  along x a x i s  (in.)  
= Distance from cent ro id  t o  shear center  along y a x i s  (in.) 

= Constants as defined i n  Section 1 1 1 - C  

= Radius of gyra t ion  ( in . )  

= Minimum Euler buckling load ( lbs )  

i v  



SUMMARY 

An e m p i r i c a l  technique i s  proposed fo r  pred ic t ing  f a i l u r e  loads f o r  
c e n t r a l l y  loaded columns with thin-walled open cross  sec t ions  which may 
f a i l  by a combination of t o r s iona l - f l exura l  buckling and c r ipp l ing .  By 
knowing the tors iona l - f  l exura l  buckling load and the  crippl-ing load f o r  
a column. one can predic t  t h e i r  i n t e r a c t i o n  by a modification of t h e  
Johnson-Euler equation, o f t en  used t o  i n t e r a c t  c r ipp l ing  and Euler-type 
buckling. Although no test  da t a  were u t i l i z e d  f o r  comparison, i t  i s  
thought t h a t  the technique i s  an  accura te  means of pred ic t ing  f a i l u r e  
loads. 

SECTION I a INTRQDUCTION 

For c e n t r a l l y  loaded columns with thin-walled open cross  sec t ions ,  
which f a i l  a t  s t r e s s e s  within the e l a s t i c  range, the  c r i t i c a l  mode of 
f a i l u r e  i s  o f t e n  to r s iona l  buckling o r  a combination of t o r s iona l  and 
f l e x u r a l  buckling. The c r i t i c a l  mode depends primarily on the  geometry 
of the c ros s  s e c t i o n  and the length of the column. Methods a r e  ava i l -  
ab l e  t o  eva lua te  t h i s  t o r s iona l  o r  t o r s iona l - f l exura l  buckling load f o r  
many v a r i a t i o n s  of c ross -sec t iona l  geometry and r e s t r a i n t  conditions.  
However, a l l  of the present methods of evaluating to r s iona l  o r  to rs iona l -  
f l e x u r a l  buckling load are based on the  assumption t h a t  the  cross- 
s ec t iona l  shape does not  change during buckling; ices, the theo r i e s  con- 
s i d e r  primary f a i l u r e  of columns as opposed t o  secondary f a i l u r e ,  char- 
ac t e r i zed  by d i s t o r t i o n  of t he  c ros s  sec t ion ,  
theory which would include coupling of t o r s ion  and f lexure  and l o c a l  
buckling would be extremely complicated. 

The formulation of a 

For very s h o r t  columns of thin-walled open cross  sec t ions  the  
f a i l u r e  stress i s  determined by the  c r ipp l ing  stress method, which does 
provide f o r  l o c a l  d i s t o r t i o n  of elements of the  c ros s  sec t ion .  

Therefore, the coupling of these two f a i l u r e  modes by an  empirical  
means would provide a s i m p l e  method t o  p red ic t  f a i l u r e  loads of columns 
which may f a i l  by a combination of the  to r s iona l - f l exura l  mode and t h e  
c r ipp l ing  mode. This approach has previously been followed i n  coupling 
c r ipp l ing  and Euler buckling fo r  closed sec t ions  (Johnson-Euler equation). 
The same approach w i l l  be used i n  t h i s  r epor t  t o  couple c r ipp l ing  and 
to r s iona l - f l exura l  buckling. 





SECTION 11. CRIPPLING STRESS 

When the corners  of a thin-walled sec t ion  i n  compression a r e  re- 
s t r a ined  aga ins t  any l a t e r a l  movement, the corner mater ia l  can continue 
t o  be loaded even a f t e r  buckling has  occured i n  some elements of the 
sec t ion .  When t h e  stress i n  t h e  most s t a b l e  corners exceeds i t s  c r i t i ca l  
value F c r i t ,  the  sec t ion  loses  i t s  a b i l i t y  t o  support any addi t iona l  
load , and f a i l s .  

Figure l ( a )  shows the c ross -sec t iona l  d i s t o r t i o n  occurring over one 
wavelength i n  a typ ica l  thin-walled sec t ion ,  
stress d i s t r i b u t i o n  over the cross  sec t ion  j u s t  before  c r ipp l ing .  

Figure l (b )  shows the 

Crippling f a i l u r e  occurs a t  extremely shor t  column lengths.  The 
c r ipp l ing  load of a member i s  equal t o  the product of the c r ipp l ing  
stress and the ac tua l  area of t he  member. 

Empirical methods of pred ic t ing  the  c r ipp l ing  stress Fcs of extruded 
and formed shee t  metal elements are r ead i ly  ava i l ab le  i n  the l i t e r a t u r e  
(Ref, 1, 2 ) ,  

FIGURE 1. DISTORTION OF CROSS SECTION AND STRESS ~ I S T R I B ~ ~ I O N  FOR CRIPPLING 

3 / 4  



SECTION 111, TORSIONAL-E'LEXURAL INSTABILITY 

Cent ra l ly  loaded columns can buckle i n  one of th ree  poss ib le  modes: 
(1) They can bend i n  the  plane of one of the  p r inc ipa l  axes; o r  (2) 
they can t w i s t  about t he  shear cen te r  a x i s ;  o r  (3) they can bend and 
t w i s t  simultaneously. For any given member, depending on i ts  length  and 
the  geometry of i t s  c ross  sec t ion ,  one of the th ree  modes w i l l  be c r i t i -  
ca l .  Mode (1) i s  the  well-known Euler type of buckling, Modes (2) and 
(3)  w i l l  be discussed below, 

A. Two Axes of Symmetry 

When the  c ros s  s e c t i o n  has two axes of symmetry, o r  i s  point 
symmetric, the  shear cen te r  and cent ro id  w i l l  coincide. I n  t h i s  case ,  
the purely to r s iona l  buckling load about the shear cen te r  a x i s  i s  given 
by (Ref. 3) 

(1) - - - - - - - - - - Y - - - - - - - - - - - -  
- A  

ppl - - IO i-. (L' E I ' - ' 1  )2 

where A = cross-sec t iona l  area 
Io = moment of i n e r t i a  of the sec t ion  about i t s  shear center  

G = shear modulus of e l a s t i c i t y  
J = t o r s ion  constant 
E = Young's modulus of e l a s t i c i t y  
r = Warping constant of t he  sec t ion  
L' = Effec t ive  length of member 

- - I, + Iy 

Thus, f o r  a c ross  s e c t i o n  with two axes of symmetry there  are three 
values of the  a x i a l  load. They are the  f l e x u r a l  buckling loads about 
the p r inc ipa l  axes (Px and Py) and the  purely to r s iona l  buckling load 
P+; then plc i s  the  lowest value of the three  loads. The lowest value 
w i l l  depend on the shape of c ros s  sec t ion  and length of member. With 
two axes of symmetry, there  i s  no i n t e r a c t i o n  and the  column f a i l s  i n  
e i t h e r  pure bending o r  pure twisting. Shapes i n  t h i s  category include 
1 - sec t ions ,  Z-sections, and cruciform sec t ions .  

B. One Axis of Symmetry 

I f  the  c ros s  sec t ion  has one axis of symmetry,say the  x a x i s ,  
the  equation t o  ob ta in  the  buckling loads i s  (Ref. 3) 

(2) = 0 _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - - _ _ _  
2 E I  ro = 'Q 

A 
9 p y =  Y 

(L' 1 
where Px = 

(L' l2 
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= A  - [ GJ + :;,'''I 
IO 

p@ and 

There are again three solutions to equation (2), one of which is P1=Py 
and represents purely flexural buckling about the y axis. The other two 
(P2,P3) are the roots of the quadratic term inside the square bracket e- 
quated to zero, These two roots give torsional-flexural buckling loads. 

------------ (3) 

2 
where K = 1 - (%) 
Therefore, a singly symmetrical section such as an angle, channel, or hat 
can buckle in either of two modes: 
buckling. 
and shape of the given section. Therefore, for singly symmetrical 
sections W: is the lowest positive value of Pi, P2 and P3. 

I 

by bending, or torsional-flexural 
Which of these two actually occurs depends on the dimensions 

6. General Cross Section 

In the general case of a column of thin-walled open cross section, 
buckling will occur by a combination of torsion and bending. 
flexural or purely torsional buckling cannot occuro 
to obtain the buckling loads is: 

Purely 
The equation (Ref. 3) 

2 2 2  2 2  ro (P-PY)(~-px)(~-~,) - P yo (P-P,) - P xo (P-P~) = o - - - ( 4 )  

This equation reduces to 

where 
2 2  

A3 = - A ( -Yo -xo 1 +1 
IO 

A1 = PxP + P  P +P@Px Y Y @  

Solution of this cubic equation yields three roots, Pi, P2, and P3. 
smallest positive value will be the critical load W. 

The 
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SECTION IV, INTERACTION ANALYSIS 

The tors ional-  f l exura l  buckling load, P’t , obtained from Section 111, 
may, f o r  sho r t  column lengths ,  be g rea t e r  than the  c r ipp l ing  load ob- 
tained from Section 11. However, the c r ipp l ing  load represents  the upper 
l i m i t  of the  load-carrying capaci ty  of the column (Fig. 2). Thus, f o r  
members whose lengths a r e  such t h a t  c r ipp l ing  and tors iona l - f lexura l  
buckling i n t e r a c t ,  a means of i n t e rac t ing  the two loads i s  des i rab le .  

The well-known Johnson-Euler equation which provides a means of 
i n t e rac t ing  c r ippl ing  and Euler buckling i s  usua l ly  given i n  the follow- 

where Fce = column f a i l i n g  stress 
Fcs = cr ippl ing  stress f o r  the given cross  sec t ion  
L’ 
P = radius  of gyrat ion 
E = Young’s modulus 

= e f f e c t i v e  length of member 

This equation gives a parabolic curve s t a r t i n g  from t h e  c r ipp l ing  stress 
a t  L’/P = 0, and becomes tangent t o  the Euler curve a t  a stress value 
equal t o  one-half the c r ipp l ing  stress, Figure 3 shows a p l o t  of t h i s  
equation f o r  aluminum a l l o y  mater ia l  f o r  var ious values of the c r ipp l ing  
stress. 

where Pce = column f a i l i n g  load 
Pcs = cr ippl ing  load 

Pe = * 2E1 = minimum Euler buckling load 
(L’ )* 

To provide a r e l a t i v e l y  s i m p l e  means of coupling c r ippl ing  and 
tors iona l - f lexura l  buckling, a l l  t h a t  i s  required i s  t o  modify the 
Johnson-Euler equation (7) t o  the following equation: 

2 
( 8  pc 3 ----”------------------------------ P, = P,, - 

4w 

By comparison of equations (7) and (8) i t  can be seen t h a t  the 
only d i f fe rence  is  t h a t  Pe of equation (7) i s  replaced by Prc, where p?; 
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FIGURE 2. PLOT OF P VERSUS L' FOR COLUMN 

1 JOHNSON '!, 

1- C U R V E S 7  "1,. 

FIGURE 3. PLOT OF JOHNSON-EULER EQUATION 
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i s  the  column f a i l u r e  load i n  e i t h e r  pure f l e x u r a l  buckling (Euler),  
pure to r s iona l  buckling , o r  a combination of f l e x u r a l  and to r s iona l  
buckling, whichever i s  the minimum a s  determined from Sect ion  111, The 
c r ipp l ing  Load PCs i s  determined from Section 11. 
equation (8) can be solved f o r  the  c r i t i c a l  load Pc. 

With these  two loads, 

This extension o f , o r  modification to ,  the  Johnson-Euler equation 
should be applied only t o  members t h a t  are c e n t r a l l y  loaded (loaded a t  
the cent ro id) .  
problem t o  def ine  the  c r ipp l ing  load. 
f e r r ed  t o  the  cent ro id  with assoc ia ted  bending moments, but the  cripp- 
l i n g  load then becomes a func t ion  not only of the  a x i a l  load but  a l s o  
of the  bending moment. There are some methods ava i l ab le  t o  determine 
"bending-crippling'' bu t  they are l imi ted ,  e s p e c i a l l y  f o r  bending about 
two axes. For t h i s  reason, equation (8) should be used only f o r  
c e n t r a l l y  loaded members. 

I f  t he  load i s  e c c e n t r i c ,  i t  then becomes a g r e a t e r  
The eccen t r i c  load can be trans- 

An example problem which i l l u s t r a t e s  the use of equation (8) 
follows i n  Section V. 
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SECTION V. EXAMPLE PROBLEM 

For the  s e c t i o n  shown below, p l o t  Pc versus L' using equation (8). 
Also show Euler buckling curve and Johnson-Euler curve. 

c - cent ro id  

s - shear cen te r  
Y 

Given Pc, = 308,000 lbs .  

A = 3.5 in .  

I, = 22.5 i n ,  

= 6.05 i n .  

X o  = 2.74 i n ,  

G = 4.0 x 10 p s i  

2 

4 

4 

IY 

6 

ti 
E = 10.5 x 10- p s i  

4 6 
r = 38.4 i n .  J = .073 in .  

For c a l c u l a t i o n  of P, aid P: r e f e r  t o  Section 111 B e  
9 6 

2 

2 2 
n 10.5 x 10 G2.5) = 2.331 X 10 - n EI,  = 

px  - 
(L' l2 (L' ) 

2 
Io = I,+ I + A xo 

Io = 22.5 + 6.05 +3.5 (2.74) 

4 Io = 54.75 i n .  

Y 
2 

2 

6 

0 

=18,660+254.39 x 10 

(L' l2 
- 54.75 
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r'= - Io = 54.75 = 15.65 
0 A 3.5 

p2 , 

pi'< 

Pce 

PC 

Solution 
shown in 

of these equations for various values of L' gives the curves 
Figure 4, 

From these curves it can be seen that equation ( 8 )  provides a means 

If L' > 43 the column will fail in pure torsional- 
of transition from the crippling load at: L '  = 0 to torsional-flexural 
buckling at L '  = 43, 
flexural buckling. The Johnson-Euler curve and Euler curve are shown 
for comparison, 
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SECTION VI. CONCLUSIONS 

The modified Johnson-Euler equation (Equation 8) is presented as a 
method of predicting failure loads of centrally loaded columns with 
thinwalledopen cross sections which fail by an interaction of crippling 
and torsional-flexural buckling. 
eccentric loads. 

Equation (8) should not be used with 
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